Democratização do Ensino da Matemática

Democratizar o ensino da Matemática, a favor da cidadania, implica em mudanças conceituais e metodológicas. [...] Tais mudanças exigem que se conceba a Matemática não apenas como um conteúdo escolar, mas antes de tudo como uma linguagem e como forma de compreender e interagir no mundo. [...] Uma mudança nas práticas pedagógicas voltadas para o ensino da Matemática na fase inicial da escolaridade precisa estar fundamentada na compreensão do ato de ler, nas diferentes situações do cotidiano e nos diversos portadores de texto. Estar alfabetizado, nos dias de hoje, implica dominar estratégias de leitura em múltiplas linguagens, tais como: linguagem alfabética, linguagem matemática e linguagem visual." (Borges, 2009)

sábado, 28 de maio de 2011

Colar de Contas

O colar de contas é um material didático introduzido em 1974 pelo famoso matemático americano Hassier Whitney, do Instituto para Estudos Avançados de Princeton, Nova Jersey, EUA.
Após ter sido reconhecido como um dos maiores matemáticos deste século, o Professor Whitney passou a dedicar-se exclusivamente ao trabalho com crianças, em especial as da pré-escola e dos anos iniciais do Ensino Fundamental.

  1. O que é um colar de contas?

É um fio (de náilon, arame fino ou barbante) com vinte contas; a cada cinco contas muda-se a cor: cinco brancas, cinco azuis, cinco brancas, cinco azuis.
Inicialmente, pode-se usar o colar com dez contas apenas, para, depois, utilizá-lo com vinte ou mais contas. Pode-se usar marcadores em cartolina ou e.v.a. para marcar quantidades no colar.
Um bom material didático deve ajudar a compreensão da criança e ser como uma extensão dela mesma. Deve também ser simples, durável, útil, facilmente conservado e, se possível, feito pela própria criança. O colar de contas tem todas essas qualidades.



  1. Para que serve?

Este material didático é extremamente útil para trabalhar a ideia de quantidade, para a construção de conceito de número e para contagem e pequenos cálculos, tornando bastante familiares à criança as quantidades e suas representações simbólicas.

  1. Como trabalhar com o colar de contas?

É muito simples! Inicialmente, deixe a criança explorar o material, descobrir o que há nele, como as contas estão divididas em grupos. Depois, através de atividades, faça a criança praticar suas descobertas.

3.1.         Explorando a ideia de quantidade

a)     Mostre 4 contas

4 é visto como 1 a menos do que 5.


b)    Mostre 7

7 é visto como 2 a mais do que 5.


c)     Mostre 11

11 é visto como 1 a mais que 10 ou 10 mais 1.



d)    Mostre 18
18 é visto como 1 a menos que 20 ou 3 a mais que 15.



3.2.         Explorando as ideias de adição, multiplicação, subtração e divisão

a)     Adição: a ideia de juntar quantidades

Com o colar de contas a criança compreende por que, por exemplo, 6 + 5 tem de ser 11 e não outra quantidade qualquer. Veja como:
ü      Com um marcador, ela marca 6 (isto é fácil: 1 a mais que 5)
ü      Conta 5 (4 da mesma cor e 1 da outra) depois do 6 e marca com outro marcador: pronto, temos 11 (1 a mais que 10). Logo, 6 + 5 é igual a 11.


b)    Multiplicação: a ideia de juntar quantidades iguais

Vejamos um exemplo: Quanto é três vezes dois?

   

1 a mais que 5, ou seja, 6. Logo, 3 x 2 são 6.

E quatro vezes três, quanto dá?


2 a mais do que 10, ou seja, 12. Logo, 4 x 3 são 12
.

c)     Subtração: a ideia de tirar uma quantidade de outra

Como usar o colar de contas para responder a uma pergunta como esta: se você tem 9 e tira 3, quantos ficam? É fácil. Veja:

1 a mais que 5, ou seja, 6. Logo, 9 – 3 são 6.

d)    Divisão: a ideia de repartir igualmente ou a ideia de medida

Por exemplo, oito dividido por quatro: 8 : 4.

ü      Repartir igualmente


Ao repartir a quantidade 8 em 4 partes iguais, obtemos a quantidade 2 em cada uma das partes. Logo, 8 : 4 = 2.

ü      Ideia de medida

Quantos 4 cabem em 8? Cabe 2 vezes o 4 no 8. Logo, 8 : 4 = 2.



Os exemplos citados servem apenas para dar uma ideia de utilização do colar de contas no trabalho com crianças. A aplicação desse material vai além disso. Ele também pode ser usado para explorar por compreensão muitas outras ideias matemáticas, como números pares e ímpares, tabuadas, múltiplos, fatos fundamentais da adição, etc.


* As informações acima fazem parte de um folheto que integra do livro “Cartilha de Matemática” de Luiz Roberto Dante.

0 comentários: